Global modelling of secondary organic aerosol
نویسندگان
چکیده
Introduction Conclusions References Tables Figures Back Close Abstract Introduction Conclusions References Tables Figures Back Close Abstract A global 3-dimensional chemistry/transport model able to describe O 3 , NO x , Volatile Organic Compounds (VOC), sulphur and NH 3 chemistry has been extended to simulate the temporal and spatial distribution of primary and secondary carbonaceous aerosols in the troposphere focusing on Secondary Organic Aerosol (SOA) formation. A number of global simulations have been performed to determine a possible range of annual global SOA production and investigate uncertainties associated with the model results. Uncertainties in the model calculations related to the enthalpy of vaporization, the solubility and the activity coefficient of the condensable species, the chemical fate of the first generation low volatility oxidation products, the ageing of particles with regard 10 to their hydrophilic properties, the partitioning of SOA on various aerosol surfaces and the evaporation of semi-volatiles from aerosol surfaces have been evaluated. Although not all sources of uncertainties have been investigated, according to our calculations, the above factors within the experimental range of variations could result to an overall uncertainty of about a factor of 20 in the global SOA budget. The global annual SOA 15 production from biogenic VOC might range from 2.5 to 44.5 Tg of organic matter per year, whereas that from anthropogenic VOC ranges from 0.05 to 2.62 Tg of organic matter per year. These estimates can be considered as a lower limit, since partitioning on coarse particles like nitrate, dust or sea-salt, together with the partitioning and the dissociation of the semi-volatile products in aerosol water has been neglected. The 20 large uncertainties associated with the emissions of VOC have not been investigated in this study. Comparison of model results to observations, where available, shows a better agreement for the upper budget estimates than for the lower ones.
منابع مشابه
Secondary organic aerosol from biogenic VOCs over West Africa during AMMA
This paper presents measurements of organic aerosols above subtropical West Africa during the wet season using data from the UK Facility for Airborne Atmospheric Measurements (FAAM) aircraft. Measurements of biogenic volatile organic compounds (BVOC) at low altitudes over these subtropical forests were made during the African Monsoon Multidisciplinary Analysis (AMMA) field experiment during Jul...
متن کاملGlobal modelling of secondary organic aerosol in the troposphere: a sensitivity analysis
A global 3-dimensional chemistry/transport model able to describe O3, NOx, Volatile Organic Compounds (VOC), sulphur and NH3 chemistry has been extended to simulate the temporal and spatial distribution of primary and secondary carbonaceous aerosols in the troposphere focusing on Secondary Organic Aerosol (SOA) formation. A number of global simulations have been performed to determine a possibl...
متن کاملIsoprene forms secondary organic aerosol through cloud processing: model simulations.
Isoprene accounts for more than half of non-methane volatile organics globally. Despite extensive experimentation, homogeneous formation of secondary organic aerosol (SOA) from isoprene remains unproven. Herein, an incloud process is identified in which isoprene produces SOA. Interstitial oxidation of isoprene produces water-soluble aldehydes that react in cloud droplets to form organic acids. ...
متن کاملModelled radiative forcing of the direct aerosol effect with multi-observation evaluation
A high-resolution global aerosol model (Oslo CTM2) driven by meteorological data and allowing a comparison with a variety of aerosol observations is used to simulate radiative forcing (RF) of the direct aerosol effect. The model simulates all main aerosol components, including several secondary components such as nitrate and secondary organic carbon. The model reproduces the main chemical compo...
متن کاملIn-cloud oxalate formation in the global troposphere: a 3-D modeling study
Organic acids attract increasing attention as contributors to atmospheric acidity, secondary organic aerosol mass and aerosol hygroscopicity. Oxalic acid is globally the most abundant dicarboxylic acid, formed via chemical oxidation of gas-phase precursors in the aqueous phase of aerosols and droplets. Its lifecycle and atmospheric global distribution remain highly uncertain and are the focus o...
متن کامل